Presented at ISMB2017

Altmetric score 21.63 (top 4.9%)

Author: Alex I Finnegan
Editor:
Research area: bioinformatics
Type:

Open peer-review

Review content is open, signing review is optional.

Maximum Entropy Methods for Extracting the Learned Features of Deep Neural Networks


Created on 7th February 2017

Alex I Finnegan; Jun S Song;


New architectures of multilayer artificial neural networks and new methods for training them are rapidly revolutionizing the application of machine learning in diverse fields, including business, social science, physical sciences, and biology. Interpreting deep neural networks, however, currently remains elusive, and a critical challenge lies in understanding which meaningful features a network is actually learning. We present a general method for interpreting deep neural networks and extracting network-learned features from input data. We describe our algorithm in the context of biological sequence analysis. Our approach, based on ideas from statistical physics, samples from the maximum entropy distribution over possible sequences, anchored at an input sequence and subject to constraints implied by the empirical function learned by a network. Using our framework, we demonstrate that local transcription factor binding motifs can be identified from a network trained on ChIP-seq data and that nucleosome positioning signals are indeed learned by a network trained on chemical cleavage nucleosome maps. Imposing a further constraint on the maximum entropy distribution, similar to the grand canonical ensemble in statistical physics, also allows us to probe whether a network is learning global sequence features, such as the high GC content in nucleosome-rich regions. This work thus provides valuable mathematical tools for interpreting and extracting learned features from feed-forward neural networks.

Show more

Review Summary

This paper has 0 completed reviews and 0 reviews in progress.

# Status Date



Name:
Email: