Presented at ISMB2017

Altmetric score 11.934 (top 8.6%)

Author: Kerem Wainer-Katsir
Research area: genetics

Open peer-review

Review content is open, signing review is optional.

Single Cell Expression Data Reveal Human Genes that Escape X-Chromosome Inactivation

Created on 9th October 2016

Kerem Wainer-Katsir; Michal Linial;

Sex chromosomes pose an inherent genetic imbalance between genders. In mammals, one of the female’s X-chromosomes undergoes inactivation (Xi). Indirect measurements estimate that about 20% of Xi genes completely or partially escape inactivation. The identity of these escapee genes and their propensity to escape inactivation remain unsolved. A direct method for identifying escapees was applied by quantifying differential allelic expression from single cells. RNA-Seq fragments were assigned to informative SNPs which were labeled by the appropriate parental haplotype. This method was applied for measuring allelic specific expression from Chromosome-X (ChrX) and an autosomal chromosome as a control. We applied the protocol for measuring biallelic expression from ChrX to 104 primary fibroblasts. Out of 215 genes that were considered, only 13 genes (6%) were associated with biallelic expression. The sensitivity of escapees' identification was increased by combining SNP mapping for parental diploid genomes together with RNA-Seq from clonal single cells (25 lymphoblasts). Using complementary protocols, referred to as strict and relaxed, we confidently identified 25 and 31escapee genes, respectively. When pooled versions of 30 and 100 cells were used, <50% of these genes were revealed. We assessed the generality of our protocols in view of an escapee catalog compiled from indirect methods. The overlap between the escapee catalog and the genes’ list from this study is statistically significant (P-value of E-07). We conclude that single cells’ expression data are instrumental for studying X-inactivation with an improved sensitivity. Finally, our results support the emerging notion of the non-deterministic nature of genes that escape X-chromosome inactivation.

Show more

Review Summary

This paper has 0 completed reviews and 0 reviews in progress.

# Status Date