Altmetric score 6.7 (top 15.8%)

Author: Georg Stricker
Editor:
Research area: bioinformatics
Type:

Open peer-review

Review content is open, signing review is optional.

Genome-wide generalized additive models


Created on 6th April 2016

Georg Stricker; Alexander Engelhardt; Daniel Schulz; Matthias Schmid; Achim Tresch; Julien Gagneur;


Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) is a widely used approach to study protein-DNA interactions. To analyze ChIP-Seq data, practitioners are required to combine tools based on different statistical assumptions and dedicated to specific applications such as calling protein occupancy peaks or testing for differential occupancies. Here, we present GenoGAM (Genome-wide Generalized Additive Model), which brings the well-established and flexible generalized additive models framework to genomic applications using a data parallelism strategy. We model ChIP-Seq read count frequencies as products of smooth functions along chromosomes. Smoothing parameters are estimated from the data eliminating ad-hoc binning and windowing needed by current approaches. We derived a peak caller based on GenoGAM with performance matching state-of-the-art methods. Moreover, GenoGAM provides significance testing for differential occupancy with controlled type I error rate and increased sensitivity over existing methods. By analyzing a set of DNA methylation data, we further demonstrate the potential of GenoGAM as a generic analysis tool for genome-wide assays.

Show more

Review Summary

This paper has 0 completed reviews and 0 reviews in progress.

# Status Date



Name:
Email: